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Abstract

It�s possible to show that Planck�s postulate saying that E = h�n,
birth certi�cate and fundamental platform of the actual Quantum
Mechanics, is strongly deducible by classic theory of resonances. This
is the result of a simple and intuitive experimental test, reported in the
alloyed motion. In this script, after the consequent analytic form, we
examine the �rst immediate consequences that lead us to reinterpret
the actual Q. M. results, �nding new ones.
The incurable fracture between macro and microcosm seems to be
radically de�nitely removed.

1 Resonance frequencies and Planck�s formula

If we consider, without attrition, a pendulum (�g. 1, alloyed picture) whom
oscillation period is � , we can amplify its amplitude if we apply to it impulses
that follow with a temporal interval T able to satisfy the condition

T = � (1)
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�g. 1

from what descends the known resonance condition


 = ! (2):

The solution of the classic equation

�x+ 
 _x+ !2x = � cos(
t) (3);

allow us to analytically describe, in a better way, the entire phenomenon.
Instead, and it�s useful to underline it, the (2) is only one of the many news
obtainable from the complete solution of (3), that, with rigor it�s neither
extremely precise because the maximum ampleness does not verify, because of
the presence of 
, just when (2) is fully satis�ed. Infact this one is rigorously
valid only when the attrition 
 is exactly null. By these circumstantiations
we observe that the (1) (or the (2)) only constitutes one of the in�nites and
numberable resonance conditions that can describe themselves in the daily
and macroscopic reality. On the other hand it�s easy and immediate to see
that a most general resonance condition is given by the identity

T = �n (n = 1; 2; 3; ::::) (4);

where n can be any entire number.
Infact, if we apply to any kind of oscillator (a pendulum, an harmonic

oscillator, a dipole, a bridge, a skyscraper etc.) external impulses able to
satisfy the (4), in that case only our action will never be in contrast with
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the said oscillator�s movement, by surely provoking resonance phenomenon.
And it�s important to observe that only through this fundamental phenom-
enon any form of external energy can be absorbed by the system in exam,
di¤erently it�s crossed, leaving it undisturbed or can even block it.
If � is the period of a pendulum without attrition (see picture) and that

one of our external action is exactly equal to n� ,it�s immediate the conviction
that, although n is rigorously and entire number, resonance is anyway veri�ed.
The motion alloyed to this work reports an easy experimental veri�cation

that can be done with a common pendulum. In that case the operator of the
motion veri�es that resonance phenomenon is present even in the case that
T = 2� . Anyway it�s possible to realize more sophisticated appliances than
the one used in the �lm for more experimental veri�es of the (4).
By anticipating even the analytic demonstration, we can say that a more

general resonance condition is obtainable when the forcer pulsation 
 and
that one of the oscillating system ! satisfy the condition

! = 
n (n = 1; 2; 3::::) (5):

It�s necessary to precise that the (5) is valid if the external forcer is applied
everytime that pendulum mass, starting from point A, arriving to B, would
come back in A, obviously without attrition. In that case the external forcer
always acts in the directiondAB. Instead, when it, changing alternately sign,
can also act in the directiondBA, the condition (5) becomes evidently

! =
1

2

n (n = 1; 2; 3::::) (5bis):

For an harmonic oscillator without attrition, in relation to total energy, we
can write

Etot =
1

2
mv2 +

1

2
kx2 = m�v2 = k�x2 (6)

so

Etot = m�v2 = m(�x�!)2 = m�x(�x�!)�! = m�x�v�! (7):

The said oscillator will conserve inde�nitely in time its oscillations. If we
apply a forcer to it that satis�es the condition (5), after the transitory, we�ll
have

Etot = m�x�v�
n = 2�m�x�v��n = H��n (8):

But it�s easy to verify that the action
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Azione = H = 2�m�x�v (9)

coincides with Planck�s one only in the case of an electric dipole, while the
(8) is a general condition in which the action varies from case to case1 :

Infact, only in the case of the electric dipole, we have

Az: = 2�m�x�v = 2�m
�x�v2

�v
= 2�m

�x

�v

e2

m�x
=
2�e2

�v
(10):

Having on mind the known relation

2�137e2 = hC (11)

and that

�v =
C

137
(12)

we have that the (10) becomes

Az: =
2�e2

�v
= h (13):

To show the intuition expressed by (5) is rigorous we can solve the following
equation

�x+ !2x = �

8><>:a

�
� 2

�

264 1

1
sin(a) cos(

!

n
t)� 1

2
sin(a) cos(

2!

n
t)+

+
1

3
sin(a) cos(

3!

n
t) + ::

375
9>=>; (14)

which forcer is represented in �g. 3

1In an old work the author written in 1986, was shown that we can substitute to
the classic ray of the electron Schwarzschild�s ray and to the �ne structure constant
the corresponding gravitational one, we obtain Borh�s corresponding equations in
gravity. The Nobel Abdus Salam, at time director of the International Centre
for Theoretical Physics of Trieste (SISSA), appreciated the manuscript and put
it in the Reading Hall of the centre (see attached letter). He, as it�s known, had
deleted some divergences of Quantum Mechanics recurring to the non linearity
of the General Relativity (even this theory has still its singularities) usable as a
running bend (cutt-o¤) for its microscopic phenomenas, then hypothesizing the
particle relieved by our Rubbia . Probably his appreciation was given by the
possibility that a gravity prospected in the article could have, in versus, eliminate
this last one�s divergences (nowadays problem still unsolved (S. Hawking) ). About
gravitational waves it seeable in the note n. 3 and the last page of this script.
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�g. 3

where a represents the little time during that is applied the said forcer.
In that case temporal interval of the equation (14) with whom the external
impulses are applied to the system satisfy the condition (5). The solution of
(14), having stopped Fourier�s develop to the fourth term, it�s given by the
following equation (15).
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The study of this solution leads to the conclusion that when n, by growing
with absolute continuity, has entire values 1; 2; 3:::the third term numerator
never annuls while its denominator that is the equation

A = �!2
�
576� 820n2 + 273n4 � 30n6 + n8

�
= 0 (16)

is equal to zero only when

n = �1; n = �2; n = �3; n = �4;
end so oscillator ampleness becomes in�nite just when n has the said values.
The �gures 4 and 5

6



�g. 4

�g. 5

graphically represent the third term of the equation (15) (stationary so-
lution), obtained making vary with the more absolute continuity the variable
n.
Always without damping, in the general case, and so when we consider

innumerable terms of Fourier�s series, we �nd that (16) is�
n2 � 1

� �
n2 � 22

� �
n2 � 32

� �
n2 � 42

�
::
�
n2 �m2

�
:::: = 0:
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So in conclusion that the intuition expressed by (5) is fully con�rmed
and that Planck non-shown equation only constitutes a macroscopic and
more ample resonance condition comparable in the daily reality. It can�t be
di¤erent, infact radiation absorption from part of material can only happen
through resonance phenomenon. In every case is to observe the Planck�s
empiric formula is able to so on this phenomenon the tip of an iceberg so it
cannot explain it in its total completion.
The more complex equation remains to be solved

�x+
 _x+!2x = �

8><>:a

�
� 2

�

264 1

1
sin(a) cos(

!

n
t)� 1

2
sin(a) cos(

2!

n
t)+

+
1

3
sin(a) cos(

3!

n
t) + ::

375
9>=>; (17)

its solution is not synthetic so it�s more di¢ cult to manage. By stopping
Fourier�s series at the second term we have the stationary solution
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graphically represented by �g. 6.
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�g. 6

In the case of a Fourier develop stopped at the third term we have the
�g. 7

�g. 7
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An analysis of these equations class leads to the conclusion the amplitude
resonance is represented by the following equations (�g. 8-9)

	 =
�f(sen(!); cos(!))�

(n2 � 12)2 + n2

� �
(n2 � 22)2 + n2


� �
(n2 � 32)2 + n2


�
:::

(18)

�g. 8
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�g. 9

The (18) can be written in the following way

	 =
�f(sen(!); cos(!))�

(n2 � 12)2 + n2

� �
(n2 � 22)2 + n2


�
::::
=

=
�f(sen(!); cos(!))

m=nY
m=1;2;3;:::

�
(n2 �m2)2 + n2


� (19)

2 Resonance energy of the hydrogen atom

The equation�s solutions (17) are not easy manipulable even because of the
presence of some undesirable terms caused by the approximations of a Fourier
series develop. We can provisionary utilize classic equation solutions (3),
taking opportunely present the resonance condition given by (5).
In the case of energy the solution of the (3) gives the known relation

Eris =
1

2
m
2

�2

(
2 � !2)2 + 
2
2
(20):
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When veri�es the condition that ! = n
 we have

Eris =
1

2
m
�2


2
(21)

and the oscillator has assumed the same pulsation of the forcer that is 
 =
!

n
.

By indicating with �v its medium velocity, in resonance conditions, we can
write

Eris =
1

2
m
�2


2
=
1

2
m
(�v
)2


2
(22):

Taking count of (5), the (22) becomes

Eris =
1

2
m�v2

�






�2
=
1

2
m�v2

�
!




�2
1

n2
(23);

that has the same structure of the relation given by Q.M., obtained by the
hypothesis of the elementary quantum of energy . To let (23) coincides with
experimental facts we must pose

�v!



=

C

137
(24):

Infact, in that case the (23) becomes

Eris =
1

2

mC2

1372
1

n2
(25);

that, taking count of (11), coincides with the known results.

3 Calculation of resonance amplitude

From the known relation related to resonance amplitude we have

A = 	 =
�q

(
2 � !2)2 + 
2
2
(26):

It follows that for ! = n


A = 	 =
�




(27)

or, taking count of the position (24) and of the (5), we have
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A = 	 =
�v





=
�v



=

C

137!
=

C

137
n
=

C

2�137�n
=

�

2�137n
(28)

from the previous relation descends that amplitude vibration of the charge
is alloyed to the electromagnetic wave length of the new relation2

� = 2�137	n (29) :

This result has just been found in the work [1].

4 Bohr�s results

By multiplying both the members of the (29) for the frequency we have

�� = 2�137	�n = C (30)

from what

137	
n = 137�vn = C (31)

so

�v =
C

137n
(32)

or

Eris =
1

2
m�v2 =

1

2
m

C2

1372
1

n2
(33) ;

result already obtained.
Because of

�v =

r
e2

m	
(34) ;

by equalizing (32) and the (34), we obtain that

2For a gravitational dipole we have

�g = 2�
�C

�v
 n

where �C is the propagation velocity of gravitational waves, �v and  are the medium
velocity and the (secondary) mass amplitude of the said dipole.
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	 =
e2

mC2
1372n2 (35)

a relation that, taking count of (11), coincides with that already known
one and so with Borh�s rays. So resonance ampleness coincides with Borh�s
particular rays.

5 The new bond between de Broglie�s wave
and the electromagnetic wave

Because the wave �dB of de Broglie is alloyed to Bohr�s orbits from the known
relation

�dB = 2�
e2

mC2
1372n2 (36);

having on mind the (11), we also have

�dB =
hC

mC2
137n2 =

h

m
C

137n

n =
h

m�v
n (37):

But the (36) can also be written

�dB = 2�
e2

mC2

1372n2

=
2�e2

m�v2
(38)

and, taking count of (34), we have

�dB =
2�e2

m�v2
= 2�	 (39):

Having on mind the relation

� = 2�137	n (29)

the (39) permits to alloy de Broglie�s wave length �dB with the electromag-
netic one � through the new relation

� = �dB137n (40) :

All of this for the alloyed atom. For the ionized dipole we�ll have

�dB =
h

m�v
(41);
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� = 2�137	 (42)

and

� = �dB137 (43):

6 Remark

The (43) says that the charge follows the same laws of the electromagnetic
radiation, except for the constant 137. Infact it can be di¤erently because its
cinematic is entirely dictated by resonance phenomenon, that can verify only
for alloyed charges. When the charge is not alloyed it assumes the famous cor-
puscular behavior. So is totally interpreted to Principia of Complementary
(Bohr 1928) for which cannot exist an experiment able to contemporaneously
disclose undulated and corpuscular ambient of material.

7 Glances about the gravitation waves quan-
tization

If it�s correct the said interpretation of the enigmatic equation by Planck for
that the relation

E = �h! = �h
n (44)

is nothing else that a more complete resonance condition deducible in the
daily and macroscopic reality, for a gravitational dipole we can analogously
write

�g = 2�
�C

�v
	n (45)

where �C is the propagation velocity of the gravitational waves, �v is the
medium velocity of the dipole,  is its amplitude and n is an entire number
that assures the resonance condition between the wave and the dipole itself.
In the case of the dipole Jupiter-Io, in the hypothesis that �C coincides

with light�s velocity, we have that

�g = 2�
�C

�v
	n =

2�Cr
GM

	

	n = 4:56�1015n [cm] = 4:58�1010n [Km] (47);
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length that is about 8 times bigger than the distance Sun-Pluto.
It should be interesting to study gravitational waves together with the

known phenomenas of the reciprocal resonances that the various moons of
Jupiter endure among them. In these circumstances we have gravitational
masses that endure acceleration variations.
In analogy with the electromagnetic phenomenas we should think about

a gravitational black body and how this energy is absorbed and emitted by
the same one etc. etc..

References

[1] Carlo Santagata New Quantum Relations

17


