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The Truth, by defining it, should be 
the easiest and innocent Lie. (C. S.) 

 
 

 
 
 
 

Abstract 
 
If Ω is the forcer pulsation and ω the one of the oscillating system, it’s known that, by the 
actual Vibrations’ Mechanics, we have a unique resonance condition, characterized by the 
identity 
 ωΩ = , 
 
in the hypothesis of null damping. 
 
It’s possible to show the previous identity is only one of the infinite and numerable 
resonance conditions that can verify in the experimental reality and that the most general 
condition is given instead by the relation 
 

( )1,2,3...n nω = Ω =  
 

in which n is any natural entire number. 
 
In this issue we’ll examine the immediate implications this involves in seismic engineering 
and in theoretical physics.  
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1. Introduction 
 
One of the most important physic phenomenas through which any kind of energy can pass 
from a system to another one, is the so-called resonance phenomenon. So, for example, 
the light, an eminently oscillating phenomenon, can be absorbed from matter or cross 
through it undisturbed, either a seismic wave can dangerously shake a structure until 
producing its collapse, or leaving it completely undamaged. It’s verified the one or the 
other of the said situations apiece the system receiving the action goes or not in 
resonance by the external cause that acts on it.  
From that  the fundamental importance to deepen study the said phenomenon.  
About it, it’s poised, radicated and general conviction that it only verifies when forcer 
resonance Ω  coincides with ω  of the system in survey, without internal attrition, we have 
a unique condition 
 
 ω = Ω . (1.1) 
 
Instead it’s very easy and immediate to see that the previous relation is only one of the 
infinite and numerable resonance conditions available in the daily and macroscopic reality.  
 
Infact we can show, both in a very intuitive way and analytically, that, generally, is valid the 
relation 
 ( )1,2,3...nω = Ω  (1.2) 

  
where n  must be rigorously an entire number.  
 
Let’s consider various oscillating systems that have a single degree of freedom (Single 
Degree Of Freedom (SDOF)). The extension to continuate systems, discussed later, is 
immediate. Fig. 1 shows a pendulum, deprived of attrition, whose period is give by the 
known relation (1.3) 

 
 

fig. 1 
 

 2 l
g

τ π= . (1.3) 

 
Fig. 2 shows the case of a buoyant to whom is hanging a mass m. if the said mass 
oscillates around the equilibrium position, the period is given by the relation 
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fig. 2 

 
 

 2 m
k

τ π=  (1.4) 

 
where m  is the mass and k  is the elastic constant of the spring. 
 
Fig. 3 show the case of a portal with an infinitely rigid transverse (deformed by Grinter1) for 
which is still valid the (1.4) and where 
 

 
fig. 3 

 
 

 3

122 ,E Ik
h

=  (1.5) 

 
 
 E  is the elasticity module of the arrects, I  the moment of inertia of those ones in the 
direction of the movement and h  their height. 
 

                                            
1 By this hypothesis, for pure semplicity, we avoid the movement calculum of the casement casued the 
transverse deformabletely, hypothesis that can anyway be removed. 



http://www.carlosantagata.it 
info@carlosantagata.it 

 

 5

Maybe it’s opportune the following circumstantiation. As we can see from (1.4), systems’ 
period now considered is independent by the initial elongation of the oscillator. Fig. 4 
shows the generic scheme of the said harmonic oscillator.  

 
 

fig. 4 
 
 
In that case the recall force acting on the mass is directly proportional to the movement 
and so it’s given by the equation 
 
 F k x= − . (1.6) 
 
So the mass is subjected to a recall force that the more is stronger the more is distant the 
blastoff point from the origin. You should attempting to think that the period τ  of that 
oscillator would be the more littlest the more bigger is the initial elongation of the spring 
and this oppositely to what we deduce from (1.4). But we need to observe that if it's true 
that the force is the more bigger the more bigger the elongation, it’s also true that, to a big 
initial elongation, also corresponds a bigger space the mass has got to run. Then, although 
the mass goes to be subjected to a bigger medium velocity, it will anyway run a bigger 
space, from that we have the independence of the period from the elongation and the 
validity of (1.4). 
 
It’s not the same in the case of the pendulum of the fig. 1. The direct proportionality 
between the recall force and the blastoff arched, corresponding to the angle α , is valid 
until it’s licit to confound α  (expressed in radiants) by the value of senα  and so when 
 

sinα α≅ . 
 
When this happens we fall back in the famous isochronism of the little oscillations (Galilei) 
so we can affirm that the period of the pendulum is still independent from the initial 
elongation. The analysis that follows will only consider harmonic oscillators and so the 
linear ones. This involves that by considering, in this case, only oscillators whose recall 
force follows Hooke’s law, by paraphrasing Galilei, we can say that for them is always valid 
the isochronism of the oscillations, even with a short or a large initial or intermediate 
elongation. 
  
After said this, now we want to intuitively take count of the validity of (1.2), and after to go 
on by the analytical way. 
 
The mass m , suspended in A, take the time τ  to describe the path ABA, the same will 
happen for the other systems represented in the previous figures. If, at the moment the 
said mass reoccupies the position A, we apply a force for a little time, as it’s visible in fig. 
1, and we continually repeat everytime the said mass is in A, we provoke the so-called 
resonance phenomenon so pendulum oscillation amplenesses will increase indefinitely.  
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So if we denote by T  the period with we apply the said impulses we have the obvious 
identity 

 
 T τ=  (1.7) 
 
that, in pulsation terms, can also be written in the form 
 

 2 2
T
π π ω

τ
= = Ω = , (1.8) 

 
from this we have the classic and unique resonance condition. But it’s also evident we’re 
not constricted at all to apply the said impulses everytime the mass reoccupies 
consecutively the position A to provoke the unlimited increment of the oscillation 
ampleness. Infact if, with opportune and variable pauses, we apply the said impulses 
everytime is true the identity 
 
 ( )1,2,3...T n nτ= =  (1.9) 
 
where n  must be obviously and rigorously an entire number, even in this more general 
case we are able to produce resonance phenomenon. Infact only if n  is a an entire 
number the action provoking our impulse will always agree or in assonance with the 
natural move of the oscillating mass so our action will never be able to provoke an 
undesired stopping of the mass movement, thing that surly would happen if the said 
numbers weren’t entire or, at the maximum, fractional ones. From (1.9) we’ll have 
evidently the identity2 
 

 2 2 n
T n n
π π ω ω

τ
= ⇒Ω = ⇒ =Ω . (1.10) 

 
But the notice give by (1.10) only describes in very empirical way and only in faint lines the 
said phenomenon, neither by it we can understand the important role of the attrition force, 
and other necessary to describe the entire dynamics of the phenomenon. With the (1.10), 
of this fundamental phenomenon we’re only able to see, and out of focus, the extreme 
peak of an iceberg, while we’re also escaping the punctual description of the big deafened 
part . Instead analytic solutions that follow will allow us to calculate punctual movements, 
accelerations and velocity of the mass subjected to vibrations and so to certainly establish 
the so-called answer of the oscillator. 
 

  
 
 
 
 
 
 
 
 
 

                                            
2 The motion attached to this file show this example. 
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2. Analytic evolutions 
 
In order to study the concepts expressed previously let’s build a forcer to let allow us to 
apply an impulse, of length t∆ , with a certain pulsation Ω . By a development in series of 
Fourier we can consider the forcer 

  

 2 1 1 1sin(1 )cos( ) sin(2 )cos(2 ) sin(3 )cos(3 ) ...
1 2 3

aF m a t a t a tδ
π π
⎧ ⎫⎡ ⎤= − Ω − Ω + Ω −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

, (2.1) 

   
where m  is the oscillating mass, δ  its acceleration and  ( )2a  represents the application 

break of the same one 2at⎛ ⎞∆ =⎜ ⎟Ω⎝ ⎠
. The said forcer, by gradually considering most terms of 

the series, tends to a rectangular impulse (see fig. 3).  
 

 
fig. 3 

 
In the case of an oscillator deprived of attrition we have the equation 
 

 
2

2
2

2 1 1 1sin(1 )cos( ) sin(2 )cos(2 ) sin(3 )cos(3 ) ...
1 2 3

d x ax a t a t a t
dt

ω δ
π π
⎧ ⎫⎡ ⎤+ = − Ω − Ω + Ω −⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

. (2.2) 

 
Because of its linearity we can solve it by summing the various solutions of the following 
equations 
 

 

( ) ( )

( ) ( )

( ) ( )

2

2

2

2

1 2 sin 1 cos 1
1
1 2 sin 2 cos 2
2
1 2 sin 3 cos 3
3

. . . .

ax x

x x a t

x x a t

x x a t

δω
π

δω
π
δω
π
δω
π

+ =

+ = − Ω

+ = + Ω

+ = − Ω

 (2.21) 
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The first equation has the solution 
 

 1 11 12 2( ) cos( ) sin( ) ax t C t C t δω ω
πω

= + + . (2.22) 

The second one, posed 
 

 

 2 sin( )aδ
π

Ξ = − , (2.23) 

 
has the solution 
 

 2 21 22 2 2

cos( )( ) cos( ) sin( ) tx t C t C tω ω
ω

Ω
= + +Ξ

−Ω
, (2.24) 

the third one, posed 
 

 1 2 sin(2 )
2

aδ
π

ϒ = , (2.25) 

 

 3 31 32 2 2 2

cos(2 )( ) cos( ) sin( )
2

tx t C t C tω ω
ω

Ω
= + + ϒ

− Ω
 (2.26) 

end the forth one, posed 
 

 1 2 sin(3 )
3

aδ
π

Γ = − , (2.27) 

is 
 

 4 41 42 2 2 2

cos(3 )( ) cos( ) sin( )
3

tx t C t C tω ω
ω

Ω
= + +Γ

− Ω
 (2.28) 

 
so the general solution is 
 

 2 2 2 2 2 2 2 2 2 2

cos(1 ) cos(2 ) cos(3 )( ) cos( ) sin( ) ..
1 2 3

a t t tx t A t B t δω ω
πω ω ω ω

Ω Ω Ω
= + + +Ξ + ϒ +Γ + +

− Ω − Ω − Ω
 (2.3) 

 
The first and the second term of the previous solution (and so the two terms characterized 
by the constants A  and B  to be determined by imposing the initial conditions) take to the 
note sinusoidal solution, to which we sum the effects of the other terms of the second 
member. If we study the function constituted by these last ones we have the following 
graphs (fig. 4 and 5). On the axis n is reported the relation /ωΩ , on the axis t the time and 
on the vertical axis the answer x(t) of the oscillator. 
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fig. 4 

 
 

fig. 5 
 
The fig. 5 shows frontally the graph of the fig. 4. From the solution (2.3) and the said 
figures we deduce we have more resonance conditions when the relation /ωΩ  is equal to 
an entire number. Infact the various denominators of the second member of (2.3) annul 
when 
 ( 1, 2, 3...)n nω = Ω = ± ± ±  (2.4) 
 
Because the generic term of the solution, that is synthetically expressible by the formula 

 ( ) 2 2 2 2 2 2
1 1

2 cos( ) cos( )1 sin( )
n n

n
n

n n

n t n tna
n n n
δ
π ω ω

=∞ =∞

= =

Ω Ω⎧ ⎫− = Τ⎨ ⎬ − Ω − Ω⎩ ⎭
∑ ∑ , (2.5) 

 
Accedes indefinite values when is verified the (2.4). 
Clearly, by the study of the equation (2.2), even if is fully reconfirmed the intuition of the 
resonance condition (1.10) and the simple experiment shown in the attached motion, we 
do not arrive to big results. The mass position remains undetermined just in proximity of 
the resonances.  
This envolves a complete indetermination of the elongation, of the velocity and of the 
acceleration of the rounds to which is subjected the oscillating system. If we don’t want to 
recur to a renormalization3, It’s necessary not to neglect the attrition force.  

                                            
3 Even the couple proton-electron constitutes an oscillating system. And even for this system are valid these 
considerations. In physics, without knowing the punctual precision around the nucleus, we impose that the 
probability to find the said particle in teh ientire and infinite space surrounding the atom is equal to the unit! 
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3. The answer of the damping oscillator  
 
In that case we have the equation 
 

 
2

2
2

2 1 1 1sin(1 )cos(1 ) sin(2 )cos(2 ) sin(3 )cos(3 ) ..
1 2 3

d x dx ax a t a t a t
dt dt

γ ω δ
π π
⎧ ⎫⎡ ⎤+ + = − Ω − Ω + Ω +⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭

.(3.1) 

 
We proceed in the same way of the previous case. We have the following example of 
equations 
 

 

2

2

2

2

1 2 sin(1 )cos(1 )
1
1 2 sin(2 )cos(2 )
2
1 2 sin(3 )cos(3 )
3

. . . . .

ax x x

x x x a t

x x x a t

x x x a t

δγ ω
π

δγ ω
π
δγ ω
π
δγ ω
π

+ + =

+ + = − Ω

+ + = + Ω

+ + = − Ω

 (3.11) 

 
The first equation has the solution 
 

 
( ) ( )2 2 2 21 14 4

2 2
0 1 2 2( ) e e

t t ax t C C
γ γ ω γ γ ω δ

πω

⎡ ⎤ ⎡ ⎤− + − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦= + + . (3.12) 

The second one, posed 
 

 1
1 2 sin(1 )
1

aδ
π

Τ = −  (3.13) 

has the solution 

 
( ) ( ) ( )

( )
2 2 2 2 2 21 14 4 12 2

1 1 2 22 2 2 2

cos( ) sin( )
( ) e e

t t t t
x t C C

γ γ ω γ γ ω ω γ

ω γ

⎡ ⎤ ⎡ ⎤− + − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
⎡ ⎤Τ −Ω Ω + Ω Ω⎣ ⎦= + +

Ω − + Ω
. (3.14) 

This equation, as it’s known, can be written in the form 
 

  

 ( ) ( ) ( ) ( )

( )

2 2 2 21 14 4
1 12 2

1 1 2 22 2 2 2

cos
e e

t t t
x t C C

γ γ ω γ γ ω

ω γ

⎡ ⎤ ⎡ ⎤− + − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Τ Ω −Θ

= + +
Ω − + Ω

 (3.15) 

 
where 
 

 1 2 2arctan γ
ω
Ω⎛ ⎞Θ = ⎜ ⎟Ω −⎝ ⎠

. (3.16) 
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The third (or umpteenth equation), posed 
 

 ( )2
1 2 sin 2
2

aδ
π

Τ =  (3.17) 

has the analog solution 
 
 

 ( ) ( ) ( ) ( )

( )

2 2 2 21 14 4
2 2

1 2 22 2 2 2 2 2

cos
e e

t t
n n

n

n t
x t C C

n n

γ γ ω γ γ ω

ω γ

⎡ ⎤ ⎡ ⎤− + − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
Τ Ω −Θ

= + +
Ω − + Ω

 (3.18) 

with the positions  
 

 ( ) 2 2 2

1 21 sin( ) arctann
n n

nna e
n n

δ γ
π ω

Ω⎛ ⎞Τ = − Θ = ⎜ ⎟Ω −⎝ ⎠
. (3.19) 

 
So the final solution results to be this 
 

 ( ) ( ) ( ) ( )

( )

2 2 2 21 14 4
2 2

2 22 2 2 2 2 21

cos
e e

nt t
n n

n

n tax t A B
n n

γ γ ω γ γ ω δ
πω ω γ

⎡ ⎤ ⎡ ⎤ =∞− + − − − −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

=

Τ Ω −Θ
= + + +

Ω − + Ω
∑ . (3.2) 

 
Said solution is composed by a transient4 part (terms affected by the constants A  e B ) 
and by a stationary part. 
 
The last one is graphically represented by the figures 6 and 7. 
 

 
 

fig. 6 
 

                                            
4 Effectually, after a certain time, these terms tend to zero. What remains in a persistent way is the stationary 
pehnomenon represented by the remaining part of the equation (3.2). 



http://www.carlosantagata.it 
info@carlosantagata.it 

 

 12

 
 

fig. 7 
 
If we consider the solution of the known equation 
 

 
2

2
2 cos( )d x dx x t

dt dt
γ ω δ+ + = Ω  (3.3) 

end then 
 

 
( )

2 2 2 24 4
2 2 2 2

1 2 22 2 2 2

cos( )( ) _ e _ e
t t tx t C C

γ ω γ ωγ γ
δ

ω γ

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− −⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟− − − +
⎢ ⎥ ⎢ ⎥⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦ Ω −Θ

= + +
Ω − +Ω

 (3.4) 

 
we see how the (3.2) would be an obvious generalization of the (3.4). to underline the 
differences towards the said solutions it’s necessary a numeric confront.  
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4. The confront 
 
We’ll pose in comparison the answers of an identical damping harmonic oscillator, once 
it’s subjected to a sinusoidal forcer  
 
 cos( )F m tδ= Ω  (4.1) 
 
and once subjected to an impulsive forcer 
 

 4 1 1 1sin(1 )cos(1 ) sin(3 )cos(3 ) sin(5 )cos(5 ) ..
1 3 5

F m a t a t a tδ
π

⎡ ⎤= Ω + Ω + Ω + +⎢ ⎥⎣ ⎦
 (4.2) 

 
both of them represented in fig. 8. 
 
 

 
fig. 8 

 
In this last case we have the following equation 

  

 
2

2
2

4 1 1 1sin( )cos( ) sin(3 )cos(3 ) sin(5 )cos(5 )..
1 3 5

d x dx x a t a t a t
dt dt

γ ω δ
π

⎧ ⎫⎡ ⎤+ + = Ω + Ω + Ω⎨ ⎬⎢ ⎥⎣ ⎦⎩ ⎭
. (4.3) 

 
Posed 

 ( )4 sin( ) 1,3,5,7,..n n a n
n
δ

π
Τ = = , (4.31) 

 
we have the following stationary solution 
 

 
( )

( )
22 2 2 2 2 2

cos( )( ) 1,3,5,7,...n
n

n tx t n
n nω γ

Ω −Θ
= Τ =

Ω − + Ω
 (4.4) 

 
The (4.4) presents resonance peaks5 everytime 

                                            
5 Thy are strongly pronounced when the dissipative term is too low. 
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 (2 1) ( 1,2,3..)n m mω
≅ = − =

Ω
 (4.5) 

 
end so when the said relation is equal to an entire uneven number. 
Let’s study the answer of the stationary part of the (4.4) and let’s assume the following 
values 
 
 4, 0.5, 10, 0.01a gδ γΩ = = = = = . (4.6) 
 
In that case the period with the impulses are applied is 2 / 2 / 4 1.57 sec.T π π= Ω = = , while 
the duration of the impulse is equal to 2 / 0.25 sec..t a∆ = Ω =  
Figures  n. 9, 10 and 11 let us evaluate the maximum movement of the oscillator. 
 

 
 

fig. 9 
 

The fig. 9 only shows the first two resonance peaks. To be accurate these peaks 
undouble. As we can better see from the fig. 10 and 11, we have these peaks in 
correspondence of 
 
 1 4 4 3 4 12eω ω= × = = × = . (4.7) 

 
fig. 10 
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In correspondence of 4ω =  we have a maximum oscillation ampleness equal to 6.4±  
units. From the fig. 11 we have, in correspondence of 4 3 12ω = × = , that 

 
fig. 11 

 
the said ampleness is equal to 3±  units. 
 
Now let’s calculate the answer of the same oscillator by hypothesizing rigorously 
sinusoidal forcer. 
In that case the stationary part is given by the formula (3.4). 
The figures 12, 13 and 14, that follow, let us to evaluate the answer of the dumping 
harmonic oscillator subjected to the said forcer. We assume the same values of the 
previous case and so 
 4, 10, 0.01gδ γΩ = = = = . (4.8) 
 
In that case it’s evident that application time of the force is equal to the entire period. 
 

 
fig. 12 

 
From the fig. 12 we evict, as it’s known, the unique resonance condition6 ωΩ ≅ . The fig. 
13 let us to evaluate the mass movement, that is equal to ± 3.6 units, much more little of 
the one had in the previous case. 
 

                                            
6 Effectively, the presence of a not so much strong attriction slightly moves the resonance conditions: In that 
case the unique condition comes when ω  does not coincide exactly withΩ  ( )ω ≈ Ω . 
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fig. 13 
 

The fig. 14 let us the evaluate the movement we have in correspondence of 12ω = .  

 
fig. 14 

 
It’s equal to 0.02 units, against the previous value equal to 3 and so about 150 time littlest. 
It’s opportune, even for what we’re going to see, to consider the example of a forcer of this 
kind 

 
fig. 15 

 
so the corresponding equation to solve is 
 

 
2

2
2 2 2 2 2

8 1 1 1cos(1 ) cos(3 ) cos(5 ) ..
1 3 5

d x dx x t t t
dt dt

γ ω δ
π

⎡ ⎤+ + = − Ω + Ω + Ω + +⎢ ⎥⎣ ⎦
 (4.9) 

 
It, this time posed  
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 2 2

8
n n

δ
π

Τ = − , (4.91) 

 
 has the analog stationary solution 
 

( )
( )

22 2 2 2 2 2

cos( )( ) 1,3,5,7,...n
n

n tx t n
n nω γ

Ω −Θ
= Τ =

Ω − + Ω
. 

Fig. 16, always for 
 

4, 10, 0.01gδ γΩ = = = = , 
 

poses in evidence the resonances for  4 12.eω ω= =  
 

 
fig. 16 

 
Fig. 17 and 18 let us to evaluate the entity of the oscillation amplenesses. 
 

 
 

fig. 17 



http://www.carlosantagata.it 
info@carlosantagata.it 

 

 18

 
 

fig. 18 
 

Finally, as we’ve just seen, the answer of the oscillator subjected to this kind of forcers, 
can be posed in the form (harmonic analysis) 
 

( )22 2 2 2 2 2
( ) nx t

n nω γ

Τ
=

Ω − + Ω
  

 
represented in the fig. 20. 
 

 
 

fig. 20 
 

Resonance verifies everytime nω ≈ Ω . The highest and external curve to the others is 
caused by a very little value of the oscillator attrition. Little by little γ  increases, resonance 
peaks tend to alloy until their nearly desappearment . the fig. 21 only shows the shortest 
curve (dissipation of the highest energy) of the fig. 20. 
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fig. 21 
 
Instead if we consider the classic equation 
 

 
2

2
2 cos( )d x dx x t

dt dt
γ ω δ+ + = Ω , (4.10) 

 
which stationary solution (harmonic analysis) is 
 

 
( )2 2 2 2

( )x t δ

ω γ
=

Ω − +Ω
, (4.11) 

we have the graph of fig. 22. 
 
  

 
 

fig. 22 
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5. Some experimental considerations 
 
To experimentally verify resonance phenomenon, is commonly used the dispositive shown 
in fig. 23. It consists in a beam hinged to the tailpieces in which middlepart is posed a 
badminton with an oddball mass so that badminton is not balanced. 
By the use of variable angular velocities, we experimentally verify that when the pulsation 
Ω  of the oddball mass tends to coincide with ω  of the beam itself, the amplenesses 
(outlined in the figure) increase more and more until the break of the beam itself. In that 
case it’s applied a rigorously sinusoidal forcer to the oscillator. 
 

 
 

fig. 23 
 

The fig. 24, taken by the work [1], shows the case the said badminton is applied to the top 
of 
 
 

 
 

fig. 24 
a structure to be studied. 
 
It’s the case to observe that an operator applying a forcer as those previously examined 
anyway produces multiresonance effects. 
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For example let’s consider the (project of) bridge on the strait of Messina. It’s prevised a 
central bay of  ml. 3.300. 
 
If we pose in the middle of this bay a badminton with a vertical rotation axis, the said bay 
will surely come horizontally in resonance only when ω ≈ Ω 7, infact the forcer is still 
rigorously sinusoidal. But if the said structure is invested by blasts of wind with pulsation 
Ω , surely the dangerous resonance phenomenon will occur when the it’s true the identity  
 

( 1,2,3..).n nω ≈ Ω =  
 

Remains the question if seismic waves can legitimately approximate with sinusoidal 
forcers or if they are an impulsive phenomenon. About this [1, page. 305], we textually 
read: 
 
The results of the researches led but the Institute of Technologies of Pasadena have been 
object of a lot of discussions. American Seismologists retain that only through the 
suggestive hypothesis that the earthquake, afar from being a <continue> physic 
phenomenon, would be constituted by a series of impulses, we can have count of its 
fundamental irregularity, infallibly noticeable by spectral cinematic. 
 
So it’s evident that if the accelerogrammas registered during telluric tosses are read with  
continuity so there is resonance, for a system with a single degree of freedom, only when 

ωΩ = . Instead if those ones are assimilated at impulses, in that case we have the just 
said multiresonance. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                            
7 In the hypothesis of linear comportment of the structure. 
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6.  A possible reading of the seismogram. 
 
The forcer to be applied to a damping oscillator is deducted by a generic seismogram.  
 
For simplicity, let’s take in consideration an example taken by the text [3]. 
 
The fig. 25 shows the punctual accelerations, in function of time, to which is subjected a 
damping harmonic oscillator. 
 

 
 

fig. 25 
 
It’s known the answer is evaluated by a numeric integration8, through Duhamel’s integral 
[2,3,4]. In basis to what previously said and in particular in the case of the forcer of the fig. 
25, it’s immediate to see, because the pulsation of that forcer is constant and equal 
to 2 / 0.2 31.41πΩ = = , that, by a Fourier approximation, even those oscillators with a 
pulsation equal to a multiple entire uneven of it go in resonance. 
 
Certainly we don’t know how seismic waves are intimately composed so any restrictive 
hypothesis about their nature can provoke big damages, but on the other hand we can 
certainly affirm that a real oscillator can go in resonance only everytime is verified the most 
general condition 
 
 ( )1,2,3,..n nω Ω =  (1.1) 
 
so if we neglect this thing we are exposed to unpredictable and enormous risks. 
  
There’s, by the writer’s side, a clamorous precedent physic that corroborates what is said 
in this issue and regards the note Problem of the Black Body, for all simile to the seismic 
one.  

                                            
8 Which limits, very strong, are well known. 
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It consists in establishing with what a physic appliance the luminous energy9 (phenomenon 
eminently oscillating) is absorbed by matter (formed by an infinity of harmonic oscillators to 
which are assimilated the atoms forming the wall of the Black Body10). To arrive to a 
theoretical justification of a known formula and experimentally deducted11, the famous 
dutch physic M. Planck was led and constricted to formulate, pain the missing justification 
of the said experimental relation, the incredible12 hypothesis that energy would be formed 
by invisible packets. For exactness He was constricted to expressly admit that a harmonic 
oscillator (atom) cannot absorb energy with continuity, but per packets or invisible 
capsules. This postulate13 is expressed by His still empiric and as much famous relation14 
15 
                                            
9 For exactness the energy of the electromagnetic waves. 
10 Here things are more simple. Infact the various harmonic oscillators costituting the wall of the black Body 
(atoms) can be considered disconnected among them. Instead, in the case of a structure, we have 
distribuited masses and elastically connected among them. 
11 We should mistrust of equations deducted in that way. Infact to the experiment can always escape 
something; more accurate instruments can pose in evidence unimaginable effects. The formula that 
describes with a good approximation the experiences produced in laboratory (justified later by Planck) is the 
known relation  

2 5 1

exp( ) 1
E hC hC

kT

λ λ

λ

−=
−

. 

 
The formula (obviously empiric) that better represents the experiments made is instead that one by 
Pringsheim-Lummer (see H. Kangro, Early History of Planck’s Radiation law, Taylor & Francis 
L.t.d.,London (1976)  

2 5 1

exp exp 1
E hC

hC kT
kT hC

λ λ
λ

λ

−=
⎛ ⎞ ⎛ ⎞+ − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

. 

 
It’s anyway to be observed the real curve (see P. Rossi Storia della Scienza Utet Vol. III (*) pag. 94) 
presents some showy depressions simile to the delves of fig. 20, deformations that are not reproduced by 
these relations and that are, likelyway, they are just caused by multiresonance. 

 
12 The first one who did not believe it was Planck himself, it was at the beginning of the past century. As it’s 
known He spent the whole rest of his life to find a reasonable explqanation of this abstruse hypotesis. Until 
our days nobody has succeeded in finding it. Later, through the years, this incredible thing came to be 
passively accepted, and this is because both for the human and the merciful spirit of the accustoming and to 
the next interpretation, if we can call it this way, of other experimenal facts.  
13 The postulates of a Theory pretending to interpret the natural phenomenas should be immediately clear 
and evident and this for postulates’ definition itself: this is the fundamental rule of a Theory. Instead, very 
often, the blastoff affirmations, even if correct, are real theorems to show. And it’s not only a pure question of 
gnoseologic comprension (E. Mach invoked, in addiction, thought economy) because we run the big risk to 
see the reality through a very distorted lens,and that’s worse, an incognito and congenital degree of myopia.   
14 From what the actual Quantum Mechanic was born. 
15 In the case of the elastic bodies we hypothesize the existence of the phonons, in analogy with 
electromagnetic evnergy photons (6.1). On purpose we observe that elastic force is amenable to the electric 
force that alloys the atoms of a substance. Infact, is possible to show [6] that the elasticity module of any 
homogeinic substance is deducible by the perfectible relation 

2
2

4

2 [ / ]Young
eE dyne cm

d
= , 

where e  is the electron charge and d is the interatomic distance, this last one determined by the 
spectroscopic analysis of the substance. Analog relations also subsist that allow to determ the coefficient of 
thermal dilatation and the sound’s speed in the considered matter, all amenable to the electron charge, to 
the mass and to the said distance. In other terms, among macroscopic (that are actually determed only in 
laboratory) and microscopic bignesses exist some evident bonds. 
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 ( 1,2,3...)E h n nν= = , (6.1) 

 
where h  is Planck’s constant, ν  is the frequency of the electromagnetic radiation and n  is 
a rigorously entire number, founding relation of the actual Quantum Mechanics. 
 
Now this enigmatic formula16 (6.1) can also be written, by the introduction of pulsation, so 

2
E h n h nν

π
Ω

= =  

and, posed, as usual 

2
h
π
= , 

 
even 

.E n= Ω  
 

But from this equation we can elicit the relation /E , that evidently represents another 
pulsation, so we have 
 

E nω= =Ω , 

formula that we already know.  
 
So, (attended that  the energy crossover between two vibrant systems can only be 
regulated by resonance phenomenon), we can affirm that presumed discontinuity of the 
energy – (caused by the presence of the as much enigmatic entire numbers) – would be 
amenable to a simple, immediate and comprehensible multiresonance resonance ?  
 
 
 
 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

                                            
16 By it would be arguable, in addiction, that the daily macroscopic reality would mask a real microscopic 
discontinuity for the littleness of the Planck’s constant. 
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7. Seismic energy assimilation. 
 
A cluster of seismic solicitations (or as other analog), surely of random17 nature, can be 
constituted by any type of waves with multiple armonicas. 
A complex structural system can be assimilated, at the first instance, by a complement of 
harmonic oscillators, disconnected among them. It’s anyway possible to impose among 
them the condition of spacial congruence. 
 
Because a damping harmonic oscillator can go in resonance, as seen, only whenever is 
verified the condition 
 

( )1,2,3...n nω ≅ Ω = , 
 
it’s opportune to evaluate the assimilation modalities of seismic energy by its side, in the 
simplest hypothesis it would be unique. If, for example, we consider the (3.2), we can 
calculate the absorbed energy with the relation 
 

 
2

21 1 .
2 2

dxE mv m
dt

⎛ ⎞= = ⎜ ⎟
⎝ ⎠

 (7.1) 

 
For it we have the following condition of stationariness 
 

 
( )

( )

2

22 2 2 2 2 21

21 sin( ) sin( )
1
2

n
nn

n

na n n t
nE m
n n

δ
π

ω γ

=∞

=

⎡ ⎤− Ω Ω −Θ⎢ ⎥
= ⎢ ⎥

⎢ ⎥Ω − + Ω
⎢ ⎥⎣ ⎦

∑ . (7.2) 

In concomitance of the resonance we obtain 
  

 2 2 2
2 2 2arctan

2n
nn

n
γ πω
ω

Ω⎛ ⎞Ω = ⇒ Θ = =⎜ ⎟Ω −⎝ ⎠
 (7.3) 

 
so, by neglecting multiple products that generate other assimilation lines, we simply have 
 

 
2 2 2 2 2

2
max 2 2

1 1

1 2 sin ( )sin ( / 2) 1 sin ( ) cos ( )
2 2

n n

n n

na n t na n tE m mV
n n

δ π
πγ

=∞ =∞

= =

⎛ ⎞ Ω − Ω
= =⎜ ⎟

⎝ ⎠
∑ ∑ . (7.4) 

 
Took count that 
 

 2at e nω∆ = = Ω
Ω

 (7.41) 

the (7.4), posed 

                                            
17 Effectively, if it’s true we don’t have the possibility to certainly formulate some hypothesis about the 
composition of any periodic solicitation,  it’s otherwise true that an haromic oscillator can go in resonance 
only under the condition nω ≅ Ω . But we can say the the damping haromic oscillator act as a filter, by letting 
itself to be crossed  by certain solicitations and by capturing some others.  
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 2V δ
πγ

=  (7.5) 

   
 becomes 

 

2 2

2
max 2

1

sin cos ( )
1 2
2

n

n

t t
E mV

n

ω ω=∞

=

⎛ ⎞∆⎜ ⎟
⎝ ⎠= ∑  (7.6) 

   
so the maximum generic term of the energy is given by the expression 
 

 2
2

1 1
2nE mV

n
=  (7.61) 

having posed 

 sin
2

V V tω⎛ ⎞= ∆⎜ ⎟
⎝ ⎠

. (7.7) 

 
The fig. 26, that follows18, denounces under which pulsations the oscillator with its 
pulsationω , absorbs energy (formula 7.2). 
 

 
 

fig. 26 
 

It’s opportune to observe that the various assimilation lines thicken around particular 
pulsations (fine structure). 

 
Let’s consider the harmonic ones of (7.2) we have 
 

 
( )

( )

2

22 2 2 2 2 21

21 sin( )1
2

n
n

n

na
E m

n n

δ
π

ω γ

=∞

=

⎡ ⎤− Ω⎢ ⎥
= ⎢ ⎥

⎢ ⎥Ω − + Ω
⎣ ⎦

∑ . (7.8) 

 
 

                                            
18 In this figure we put Ω  and we madeω  to vary. 
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The figures that follows19, for various crescent values of γ , allow to have an idea of (7.8). 
 

 
 

fig. 27 
 

 
 

fig. 28 
 
 

 
 

fig. 29 
 
 

                                            
19 Instead in the following figures we put the value ω  and we made Ω  to vary. 
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fig. 30 
 

 

 
 

fig. 31 
 
 

 
 

fig. 32 
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fig. 33 
 

The following pages represent instead the formula 
 

 
( )

( )

2

22 2 2 2 2 21

21 sin( )1
2

n
n

n

na
E m

n n

δ
π

ω γ

=∞

=

⎡ ⎤− Ω⎢ ⎥
= ⎢ ⎥

⎢ ⎥Ω − + Ω
⎣ ⎦

∑  (7.9) 

 
that neglects multiple products, puts the value Ω  havingω as variable. 
 
The graphs below represent the (7.9) for the following values 
 
 [ ]10 0.07 5 2.5, 10.5aδ γ= = Ω = ∈  (7.10) 
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Even here we note some assimilation lines transforming in sinusoids. 
We can observe how the various assimilation lines, well evident in the first graphs, little by 
little the value of γ  increases, they tend to disappear. Viceversa, for the values of γ  
smaller and smaller, the various lines tend to assume a unique energetic value. 
Fig. 34, below 
 

 
 

fig. 34 
 

shows, by a continuate tract, the (7.9) and, represented per dots, the classic formula 
 

 
( )

2

22 2 2 2

1
2

E m δ

ω γ

⎡ ⎤
Ω⎢ ⎥= ⎢ ⎥

Ω − + Ω⎢ ⎥⎣ ⎦

 (7.11) 
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As we can see from the confront, while with the (7.9) we have a big assimilation regarding 
all the numerable pulsations of the break [ ]0,ω ∈ ∞ , with the (7.11) we have a unique line. 
From what we perceive another new solution for the Problem of the Black Body. 
 
So if a single harmonic oscillator has infinite and numerable resonance conditions to which 
correspond different grades of energy assimilation, we can say that it’s valid no more The 
Energy Equipartition Theorem20 drawable from Classic Mechanics, or better, furthermore 
precised. Let’s take in consideration the fig. 32.  In it there’s an oscillator with its own 
pulsation ω , subjected to an external forcer with pulsation Ω  and this one variating with 
absolute continuity. From the said figure we evict the oscillator instead absorbs energy in a 
discrete way. When Ω  is null the absorbed energy is either null. Little by little that Ω  
increases the extreme peaks of the absorptions tend to increase until they arrive to a 
constant asymptotic value. So, for crescent values of Ω  and for the elected values ofγ , in 
this case the said absorption line peaks tend to balance. So we can say that for elevated 
values of Ω  and only for a particular value of γ  we find again as a limit case the said 
Principia. 
 
In addiction, if we admit that the electromagnetic radiation is representable by a forcer of 
kind (3.1) and we pose, in the case of hydrogen atom, 
 

 
137
CV =  (7.12) 

 
then the (7.6) coincides with Bohr’s relation. In that case the (7.6) becomes 
 

 
2

max 2 2

1 1
2 137

CE m
n

=  (7.13) 

 
where C  is the light’s speed, m  is the electron mass 1/137  is the fine constant structure. 
Because it’s known that  
 22 137e hCπ = , (7.14) 
 
where e  is the electron charge and h  is Planck’s constant, the (7.13) becomes 

  

 
2 4

max 2 2

2 1meE
h n

π
=  (7.15) 

 
that is the famous Bohr’s relation. But He obtains the (7.15) with a filled series of 
postulates in open contradiction with heavy experimental facts, foreseen from the 
consolidated classic mechanics, and by the use of a mathematical expedient not yet fell in 
disuse at all. Later Bohr confided to the young Heisenberg [8] those facts and His deep 
skeptisism in the impossibility of the Classic Mechanics to interpret microscopic 
phenomenas. In a concise way, we show the new and strong postulates that He had to 
assume to  explain  hydrogen atom lines. 

                                            
20 By this Principia, that generates the famous Ultraviolet Catastrophe (Rayleigh & Jeans), solved by Planck 
by the hypothesis of the energy quantum, energy would equipart among all the oscillators. It is elicited in 
Classic Mechanics by considering the known harmonic oscillator, deprived of resistence and with a unique 
condition of resonance.  
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• With Bohr occurs to admit that electron can rotate around the nucleus only on 
particular orbits in biunique correspondence with complement of the entire 
numbers21. 

• It occurs to admit that the electron, even by running on its particular circular orbits of 
ray nr , does not emit radiations and this in open an unsolved contrast with the 
cleared fact that an accelerated charge emits electromagnetic waves. 

• It occurs, most precisely, to admit that the action endured by the said charge from 
the nucleus would not have any value (as it happens in Classic Mechanics) but it 
would be an exact multiple of the action h , that appears in the empiric formula of 
Planck (6.1). 

• It occurs to admit that exist a postulate, called mechanical, by E h nν=  and another 
postulate, called optical or maimed that is still in use, by it instead E hν= . Instead if 
we coherently we always and solely admit the (6.1), as it’s easy to verify, we obtain 
a different relation from the (7.12), that is in contrast with the experimental facts: at 
the place of 2n  we have 3n . This is the banal mathematical expedient. 

 
When Bohr submitted His theory to the Authoritative Ernest Rutherford he had this answer: 
 
Dear Dr. Bohr 
 
I received your paper and I read it with great interest.. . Your ideas about the origin of the 
hydrogen spectrum are very clever and seem to work fine, but the mixing of Planck’s ideas 
with the old mechanics makes it difficult to obtain a physical idea on which the whole 
argument should be based. … 
 
20 March 1913 
 
E. Rutherford   
 
If we consider the generic term 
 

 
( )22 2 2 2 2 2

( ) n
nx t

n nω γ

Τ
= Ψ =

Ω − + Ω
 (7.16) 

 
in resonance conditions ( )n ωΩ =  we have, for the (7.7), 
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δδ ω
γ π λπ
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⎛ ⎞ ⎛ ⎞∆− ⎜ ⎟ ⎜ ⎟Τ ⎝ ⎠ ⎝ ⎠Ψ = = = = = =
± Ω ±

,(7.17) 

 
where C is the light’s speed and λ  is the electromagnetic wave length. From what we 
have the new relation that alloys the resonance length of the charge to the electromagnetic 
wave length it generates22  that is [9] 

                                            
21 Instead in Classic Mechanics these rays can assume with continuity all the values in the field of the real 
numbers. 
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 2 137 n nλ π= Ψ . (7.18) 
 
The same relation can be obtained independently from what said in the present work [9]. 
From (7.18) follows that nΨ  coincides with the Bohr’s ray nr . Infact by multiplying the 
(7.18) for the frequency ν  we have 
 
 2 137 137 137n n nC n n v nλν π ν ω= = Ψ = Ψ =  (7.19) 
from what follows 

 
137n

Cv
n

=  (7.20) 

On the other hand, in the case of the dipole proton-electron, we can write that 
 

 
2

n
n

ev
m

=
Ψ

 (7.21) 

 
and by equalising these last equations we have  
 

 
2

2 2 2 2
2 137 137n e

e n R n
mC

Ψ = =  (7.22) 

 
by having denoted with eR  the classic ray of the electron. Took count of the identity (7.14), 
we have that the (7.22) can be written 

 
2

2
2 24n
h n
e mπ

Ψ =  (7.23) 

 
that coincides with Bohr’s relation. Had on mind that the (7.18), by introducing de Broglie’s 
relation, can be written 
 
 137dB nλ λ=  (7.24) 
 
we have a bond between the electromagnetic wave and the de Broglie’s one. 
 
By this we also solve the weighty and omnipresent paradox wave-corpuscle. Infact the 
electron, or any charged particle, has intrinsically the familiar corpuscular aspect, when it’s 
free. In the case it would be part of a dipole, it is constricted, from the resonance 
phenomenon, to vibrate in perfect syntony with the electromagnetic wave  and therefore it  
acquires, in some circumstances, all the features of the undulatory phenomenas. Finally 
it’s to be observed if we assume 137  equal to the unit de Broglie’s wave identifies with the 
electromagnetic one. 
 

                                                                                                                                                 
22 Both in classic electrodynamics and in quantum one we admit that the electromagnetic radiation frequency 
coincides with the one of the dipole generating it. Nothing is said about the eventual bond between Ψ of the 
charge vibration and and the electromagnetic wave lengthλ  it generates.    



http://www.carlosantagata.it 
info@carlosantagata.it 

 

 35

The relation (7.24) can be verified remaking the experience verifying de Broglie’s relation 
and also by measuring the electromagnetic radiation that evinces during the same 
experiment. 
So we can say that de Broglie’s incredible mute orbits are this way because they just 
constitute the moments the electromagnetic wave is absorbed by matter. 
 
So it’s possible to specialize the solution of the (3.1) in the case of the hydrogen atom, by 
determining the value to attribute to the bignesses , , e tγ ω δ ∆  . With it is finally 
possible to describe with the maximum precision all the mechanical features that intervene 
in the interpretation phase between the wave and the atom (hidden variables). So it’s 
interpreted the relation of indetermination by Heisenberg because now it’s more 
comprehensible the existence of those hidden variables hypothesized by Einstein, arduous 
adversary of the physic laws casualness (God does not play dice). 
 
If, for example, the position (7.12) 
 

 2 2 1 2 1 2 1sin( ) sin( ) sin( ) sin( )
2 2 2 137

Cna na n t tδ δ δ δ ω
π γ π γ π γ π γ

= = Ω ∆ = ∆ =   

 
Is furthermore precised by posing 
 

 Cδ
γ
=  (7.25) 

and 
 

 2 1 1sin( )
2 137

tω
π

∆ = , (7.26) 

 
we have what follows. From the (7.25) we deduce that 
 

 
137 137

V C Cδ ω ω ωγ
γ γ γ
= = = ⎯⎯→ = , (7.27) 

 
so the damping is less than the pulsation. From the (7.26) we have that the duration of the 
electromagnetic impulse is given by  
 

 1
2 137

Tt∆ =  (7.28) 

 
where T  indicates the oscillator period. Therefore the external impulse duration is 274 
more little of the time needs the electron to run its orbit. 
 
It’s to observe that by actual knowledge [11], differently from what we deduce by the 
(7.18), we only have that the electromagnetic wave length is a lot greater than electron ray 
[11, p. 27] that is 
 

 
2

2
o

C e
mC

λ
ν

=  (7.29) 

and that, differently from the (7.5),  
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 γ ω . (7.30) 
  
These are the first results obtained if we want to interpret the empiric relation of Planck as 
a more coherent resonance condition, although more general of the one always silently 
hypothesized in theorical physics .    
 
Until here we have given some becks about the electromagnetic dipole. In an analog way  
can also be considered the gravitational dipole (binary system M + m) [7], with an evident 
and immediate generalization even of the (7.18). Infact this one can be written in a more 
general form  

 2 C n
V

λ π= Ψ  (7.31) 

 
by indicating with V  the charge medium velocity or the mass in the assimilation phase. If 
the gravitational wave that bangs the dipole has a speed equal to the one of the light, then 
the (7.10 or 7.31) specializes. In that case we have that the fundamental wave length 

22 2 /GM Cπ πΨ = Ψ =  is equal to the semi-length of Schwarzschild’s circumference23. 
This could be the right way to solve the actual problem of the gravitational energy 
quantization.  
 
But maybe it could be opportune first to reconduct gravity to already known interactions !  
 
For completion, it occurs to relieve that even if we consider the non linearity of the electric 
field [5] (non linear or keplerian oscillator24) that is the equation 
 

 ( )
2 2

22 exp
1

d x dx x i t
dt dt x

p

ωγ δ

ε

+ + = − Ω
⎛ ⎞
−⎜ ⎟

⎝ ⎠

 (7.32) 

we find again the multiresonances of the single oscillator. Infact the stationary solution of 
the (7.32) is of the type [7] 
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=

Τ
= − Ω

Ω − + Ω
∑ . (7.33) 

 
 
 
 
 
 
 
 
 
 
 

                                            
23 It’s to note as a rule of the classic ray of the electron of the (7.14) is assumed from the one of 
Schwarzschild.  
24 With whom we have another solution of the problem of the Black Body. 
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